

Exercise sheet 2

Tuesday 6th January 2026

Minimal surfaces in hyperbolic manifolds

Exercise 1: Minimal graphs in the upper half-space and parabolic invariant solutions

1. (Not too hard, if one has already done Exercise 3 of Sheet 1) In the upper half-space

$$\mathbb{H}^3 = \left(\{(x, y, z) \mid z > 0\}, \frac{dx^2 + dy^2 + dz^2}{z^2} \right),$$

let $\Sigma \subset \mathbb{H}^3$ be the graph of a function $u : \Omega \rightarrow (0, +\infty)$ over the (x, y) -plane. Show that Σ is minimal if and only if

$$(1 + u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1 + u_x^2)u_{yy} + \frac{2(1 + u_x^2 + u_y^2)}{u} = 0.$$

2. (Easy) Write down an ODE which is equivalent to finding a surface Σ as above that is invariant under a parabolic one-parameter group of isometries $(x, y, z) \mapsto (x, y + t, z)$.
3. (Medium) Show that the maximal time of existence of such ODE is finite.
4. (Harder) Show that there exists a unique complete minimal parabolic-invariant graph, up to isometry. What is its boundary at infinity?

Exercise 2: Geometric maximum principle

1. (Easy) Let $\Sigma \subset \mathbb{R}^3$ be the graph of a function $u : \Omega \rightarrow \mathbb{R}$, for Ω an open subset of \mathbb{R}^2 . Suppose that $du_p = 0$. Prove that the second fundamental form of Σ at $p = (x, y, z)$, computed with respect to the upward normal vector field, equals the (Euclidean) Hessian of f at (x, y) .
2. (Easy) Deduce the following statement: if two embedded surfaces Σ_- and Σ_+ are equal up to order one at p (i.e. p is in both Σ_- and Σ_+ , and $T_p\Sigma_- = T_p\Sigma_+$) and Σ_+ lies above Σ_- in a neighbourhood of p , then the mean curvatures H_\pm of Σ_\pm satisfy $H_-(p) \leq H_+(p)$.
3. (Medium) Generalize to any ambient Riemannian manifold. [Hint: use normal coordinates centered at p .]
4. (Optional, and intentionally vague) Look up and apply the strong maximum principle to obtain the following additional statement: if both Σ_- and Σ_+ are minimal and connected, then $\Sigma_- = \Sigma_+$.
5. (Medium) Prove that there is no closed (i.e. compact without boundary) minimal surface in \mathbb{R}^3 or \mathbb{H}^3 .
6. (Medium) Explain why the proof of the previous point fails in \mathbb{S}^3 (see Exercise 2 of Sheet 1 for counterexamples).

Exercise 3: Almost-Fuchsian manifolds

1. (Medium) Let Σ be a minimal surface in a complete hyperbolic manifold such that $\|\Pi_\Sigma\|^2 \leq 2$. Let Σ_t (for $t \in \mathbb{R}$) be the set

$$\Sigma_t = \{\exp_p(tN(p)) \mid p \in \Sigma\}$$

where N is the unit normal vector of Σ . Prove that Σ_t is an immersed surface and that the pull-back to Σ of its first and second fundamental forms are

$$I_t = I((\cos t)\text{id} + (\sin t)B, (\cos t)\text{id} + (\sin t)B) \quad \text{and} \quad \Pi_t = I((\cos t)B - (\sin t)\text{id}, (\cos t)B - (\sin t)\text{id})$$

[Hint: it is convenient to use the hyperboloid model of \mathbb{H}^3 since the exponential map is particularly simple.]

2. (Easy) Show that, if $\|\Pi_\Sigma\|^2 < 2$, then Σ_t is convex for $|t| > c$, for c a constant to be computed.
3. (Easy) Show that the mean curvature of Σ_t is negative for $t > 0$ and positive for $t < 0$ — that is, the mean curvature vector always points towards Σ .
4. (Medium) Apply the geometric maximum principle to show that if a complete three-manifold M admits a foliation by closed surfaces where one leaf (say Σ) is minimal and all the other leaves have mean curvature vector pointing towards Σ , then Σ is the unique closed minimal surface in M .
5. (Easy, at this point) Conclude that a weakly almost-Fuchsian manifold — that is, a complete hyperbolic manifold homeomorphic to $S \times \mathbb{R}$ admitting a closed minimal surface Σ with $\|\Pi_\Sigma\|^2 \leq 2$ — has a unique closed minimal surface.

Comment: a conjecture often attributed to Thurston asserts that every almost-Fuchsian manifold admits a foliation where all the leaves have *constant* mean curvature, where (as in point 4) one leaf is the minimal surface and the mean curvature vector of all the other leaves point towards the minimal surface.